Energy Department Announces Next Investment to Accelerate Next Generation Biofuels

The projects – located in Oklahoma, Tennessee, Utah and Wisconsin – represent a $13 million Energy Department investment.

WASHINGTON -- Building on President Obama's plan to cut carbon pollution and announced this week, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel and jet fuels from biomass. The projects – located in Oklahoma, Tennessee, Utah and Wisconsin – represent a $13 million Energy Department investment.


"By partnering with private industry, universities and our national labs, we can increase America's energy security, bolster rural economic development and cut harmful carbon pollution from our cars, trucks and planes," said Energy Secretary Ernest Moniz. "As the President made clear in his plan to cut carbon pollution, partnerships like these will help move our economy towards cleaner, more efficient forms of energy that lower our reliance on foreign oil."

In the United States, the transportation sector accounts for two-thirds of total U.S. oil consumption and one-third of our nation's total greenhouse gas emissions. Hydrocarbon-based biofuels made from non-food feedstocks, waste materials and algae can directly replace gasoline and other fuels in our gas tanks and refineries. The Energy Department continues to take steps to speed the development of clean, renewable biofuels, with the goal of producing cost-competitive drop-in biofuels at $3 per gallon by 2017.

The research projects announced today build on the Obama Administration's broader efforts to accelerate the next generation of biofuels by bringing down costs, improving performance and identifying effective, non-food feedstocks and conversion technologies. These projects will help maximize the amount of renewable carbon and hydrogen that can be converted to fuels from biomass and improve the separation processes in bio-oil production to remove non-fuel components – further lowering production costs.

The projects selected for negotiation include:

Ceramatec (up to $3.3 million; Salt Lake City, Utah): Ceramatec will utilize an efficient electrochemical deoxygenation process to develop cost-effective technology to separate oxygen from bio-oil. This project will help produce hydrocarbon products suitable for further processing in conventional petroleum refineries.

Oak Ridge National Laboratory (up to $2.1 million; Oak Ridge, Tennessee): Oak Ridge National Laboratory will use a microbial electrolysis process to efficiently remove the hydrogen from the water found in bio-oil. This technology will help reduce the corrosivity of bio-oil and improve the efficiency of converting hydrogen and biomass to biofuels. The University of Tennessee-Knoxville, Georgia Institute of Technology, Pall Corporation, OmniTech International and FuelCellsEtc will also participate in this project.

University of Oklahoma (up to $4 million; Norman, Oklahoma): The University of Oklahoma will investigate two methods -- thermal fractionation and supercritical solvent extraction -- to maximize the amount of renewable carbon and hydrogen that can be extracted from biomass and converted to a refinery-compatible intermediate and suitable for final upgrading to a transportation fuel. The multidisciplinary research team includes experts in catalysis, separation, life-cycle analysis and techno-economic assessment.

Virent, Inc. (up to $4 million; Madison, Wisconsin): Virent will develop an innovative separation process which uses its BioForming® technology to efficiently convert carbon from lignocellulosic biomass into hydrocarbon fuels. Virent will work to improve the overall carbon conversion efficiency of biomass – helping to reduce the cost of producing hydrocarbon biofuels that work with our existing transportation fuel infrastructure and are capable of meeting the Renewable Fuel Standard. Idaho National Laboratory will also bring their feedstock pre-processing capabilities to the project.

Featured Product

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

Our RE Series batteries are designed to provide the highest peak capacity, longest cycle life, and greatest reliability for use in industrial or residential renewable energy applications. Renewable Energy Series batteries utilize the company's exclusive XC2™ formulation and Diamond Plate Technology® to create the industry's most efficient battery plates, delivering greater watt-hours per liter and watt-hours per kilogram than any other flooded lead-acid battery in the market. Our Deep Cycle batteries are engineered to work with solar panels as well as other renewable energy applications.