Molten storage and thermophotovoltaics offer new solar power pathway

Georgia Institute of Technology:  New computer modeling suggests that high temperature TPV conversion -- which captures infrared radiation from very hot surfaces -- could one day rival combined-cycle turbine systems when combined with thermal storage using liquid metal at temperatures around 1,300 degrees Celsius. Advances in high-temperature components and improved system modeling, combined with the potential for conversion costs an order of magnitude lower than those of turbines, suggest that TPV could offer a pathway for efficiently storing and producing electrical power from solar thermal sources, a new study suggests.

The underlying technologies of high temperature storage and thermophotovoltaic conversion could also be used to produce grid-scale batteries able to rapidly supplement other power sources by storing heat for quick conversion to electricity. The research, supported by ARPA-E, was reported July 4 in the journal Energy and Environmental Science by researchers at the Georgia Institute of Technology.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

Our RE Series batteries are designed to provide the highest peak capacity, longest cycle life, and greatest reliability for use in industrial or residential renewable energy applications. Renewable Energy Series batteries utilize the company's exclusive XC2™ formulation and Diamond Plate Technology® to create the industry's most efficient battery plates, delivering greater watt-hours per liter and watt-hours per kilogram than any other flooded lead-acid battery in the market. Our Deep Cycle batteries are engineered to work with solar panels as well as other renewable energy applications.