UC makes largest solar-energy purchase by U.S. higher education institution

The University of California announced Monday that it signed two power-purchase agreements that, combined, will provide 206,000 megawatt hours of solar energy per year — the largest solar energy purchase by any higher education institution in the U.S.
 
This energy is equivalent to powering 30,000 homes and will avoid producing more than 88,000 metric tons of carbon dioxide per year. The initiative will provide power for UC Irvine, UC San Diego and UC San Francisco, along with their medical centers, in addition to UC Merced and UC Santa Cruz.
 
Mark Byron, the university’s wholesale electricity program manager, described the purchase as a “nexus” with UC President Janet Napolitano’s sustainability initiative, which was released November. One of the main components of the initiative is to be carbon neutral by 2025.
 
“By injecting solar energy, we’re making sure our portfolio comes from green energy,” Byron explained.
 
The university signed the 25-year agreements with Frontier Renewables, a San Mateo-based company focused on solar energy technology. Two solar fields will be built in Fresno County as part of the project.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Vecoplan - Planning and implementation of complete processing plants in refuse derived fuel production

Vecoplan - Planning and implementation of complete processing plants in refuse derived fuel production

In order to reduce the costs involved in the energy-intensive production of cement, many manufacturers are turning to refuse-derived fuels (RDF), considerably reducing the proportion of expensive primary fuels they would normally use. Solid fuels are being increasingly used - these might be used tyres, waste wood or mixtures of plastics, paper, composite materials and textiles. Vecoplan provides operators of cement plants with proven and robust components for conveying the material and separating iron and impurities, efficient receiving stations, storage systems and, of course, efficient shredders for an output in various qualities.