Stanford's solar cell turbocharger could boost solar power output by 50%

Scientists at Stanford University have improved the efficiency of a revolutionary solar cell by around 100 times. Unlike standard photovoltaic cells, which only capture light energy, Stanford’s new device captures both light and heat, potentially boosting solar cell efficiency towards 60% — way beyond the 30-40% limit of traditional silicon photovoltaic solar cells.

This new device uses a process called photon-enhanced thermionic emission (PETE). In photovoltaic cells, photons strike a semiconductor (usually silicon), creating electricity by knocking electrons loose from their parent atoms. The PETE process is similar, but also very different and altogether rather complex. In essence, think of it as the photovoltaic equivalent of a turbocharger.  Full Article.

Comments (1)

Perhaps (certainly) a rhetorical question, but why must we, for commercialization purposes, exploit interim solutions with all of their negative environmental and social impacts, before going directly to the obvious and best answer? Certainly cost is a factor, but continuing to do so is just morally and ethically wrong.

Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

Our RE Series batteries are designed to provide the highest peak capacity, longest cycle life, and greatest reliability for use in industrial or residential renewable energy applications. Renewable Energy Series batteries utilize the company's exclusive XC2™ formulation and Diamond Plate Technology® to create the industry's most efficient battery plates, delivering greater watt-hours per liter and watt-hours per kilogram than any other flooded lead-acid battery in the market. Our Deep Cycle batteries are engineered to work with solar panels as well as other renewable energy applications.