Biomass wastes can be transformed into clean energy and/or fuels by a variety of technologies, ranging from conventional combustion process to state-of-the art thermal depolymerization technology. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting the pollution control standards.

Biomass Wastes

Salman Zafar | Renewable Energy Advisor

Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. Biomass comes from a variety of sources which include:
 
· Wood from natural forests and woodlands
· Forestry plantations
· Forestry residues
· Agricultural residues such as straw, stover, cane trash and green agricultural wastes
· Agro-industrial wastes, such as sugarcane bagasse and rice husk
· Animal wastes
· Industrial wastes, such as black liquor from paper manufacturing
· Sewage
· Municipal solid wastes (MSW)
· Food processing wastes
 
The energy contained in biomass originally came from the sun. Through photosynthesis carbon dioxide in the air is transformed into other carbon containing molecules (e.g. sugars, starches and cellulose) in plants. The chemical energy that is stored in plants and animals (animals eat plants or other animals) or in their waste is called bio-energy.
 
When biomass is burned it releases its energy, generally in the form of heat. The biomass carbon reacts with oxygen in the air to form carbon dioxide. If fully combusted the amount of carbon dioxide produced is equal to the amount which was absorbed from the air while the plant was growing.
 
In nature, if biomass is left lying around on the ground it will break down over a long period of time, releasing carbon dioxide and its store of energy slowly. By burning biomass its store of energy is released quickly and often in a useful way. So converting biomass into useful energy imitates the natural processes but at a faster rate.
 
Biomass wastes can be transformed into clean energy and/or fuels by a variety of technologies, ranging from conventional combustion process to state-of-the art thermal depolymerization technology. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner while meeting the pollution control standards.
 
Biomass waste-to-energy conversion reduces greenhouse gas emissions in two ways. Heat and electrical energy is generated which reduces the dependence on power plants based on fossil fuels. The greenhouse gas emissions are significantly reduced by preventing methane emissions from landfills. Moreover, waste-to-energy plants are highly efficient in harnessing the untapped sources of energy from wastes. 

Conversion Technologies
 
Biomass energy technology is inherently flexible. The variety of technological options available means that it can be applied at a small, localized scale primarily for heat, or it can be used in much larger base-load power generation capacity whilst also producing heat. Biomass generation can thus be tailored to rural or urban environments, and utilized in domestic, commercial or industrial applications.
 
A host of technologies are available for realizing the potential of biomass waste as an energy source, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste.  
 
Biomass can be converted into energy by simple combustion, by co-firing with other fuels or through some intermediate process such as gasification. The energy produced can be electrical power, heat or both (combined heat and power, or CHP). The advantage of utilizing heat as well as or instead of electrical power is the marked improvement of conversion efficiency - electrical generation has a typical efficiency of around 30%, but if heat is used efficiencies can rise to more than 85%.
 
Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.

Major Types of Biomass Wastes
 
Biomass energy projects provide major business opportunities, environmental benefits, and rural development. Feedstocks can be obtained from a wide array of sources without jeopardizing the food and feed supply, forests, and biodiversity in the world.
 
Agricultural Residues
Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually worldwide, and are vastly underutilised. Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilized.
 
Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemical processed to produce electricity and heat. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. The main differences are the high content of volatile matter and lower density and burning time.
 
Animal Waste
There are a wide range of animal wastes that can be used as sources of biomass energy. The most common sources are animal and poultry manures. In the past this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion.
The most attractive method of converting these waste materials to useful form is anaerobic digestion which gives biogas that can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, or for space and water heating.

Forestry Residues
Forestry residues are generated by operations such as thinning of plantations, clearing for logging roads, extracting stem-wood for pulp and timber, and natural attrition. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for biomass energy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy.
Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Wood Wastes
Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.
 
Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings. Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood. Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood.

Industrial Wastes
The food industry produces a large number of residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source.
 
Solid wastes include peelings and scraps from fruit and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludges and coffee grounds. These wastes are usually disposed of in landfill dumps.
Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations as well as wine making.
These waste waters contain sugars, starches and other dissolved and solid organic matter. The potential exists for these industrial wastes to be anaerobically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist.

Pulp and paper industry is considered to be one of the highly polluting industries and consumes large amount of energy and water in various unit operations. The wastewater discharged by this industry is highly heterogeneous as it contains compounds from wood or other raw materials, processed chemicals as well as compound formed during processing. Black liquor can be judiciously utilized for production of biogas using anaerobic UASB technology.

Municipal Solid Wastes and Sewage
Millions of tonnes of household waste are collected each year with the vast majority disposed of in open fields. The biomass resource in MSW comprises the putrescibles, paper and plastic and averages 80% of the total MSW collected. Municipal solid waste can be converted into energy by direct combustion, or by natural anaerobic digestion in the engineered landfill. At the landfill sites the gas produced by the natural decomposition of MSW (approximately 50% methane and 50% carbon dioxide) is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Sewage is a source of biomass energy that is very similar to the other animal wastes. Energy can be extracted from sewage using anaerobic digestion to produce biogas. The sewage sludge that remains can be incinerated or undergo pyrolysis to produce more biogas.

CONCLUSIONS
 
The growing use of waste-to-energy technologies as a method for safe disposal of solid and liquid wastes, and as an attractive option to generate heat, power and fuels, has greatly reduced environmental impacts of a wide array of wastes. An environmentally sound and techno-economically viable methodology to treat different classes of waste is highly crucial for the sustainability of modern societies. A transition from conventional energy systems to one based on renewable resources is necessary to meet the ever-increasing demand for energy and to address environmental concerns.

Salman Zafar is an independent renewable energy advisor with vast expertise in biomass energy, waste-to-energy conversion, anaerobic digestion, municipal solid waste management and renewable energy systems. Apart from managing the renewable energy advisory firm, BioEnergy Consult, he has alliances with several leading international companies and non-governmental agencies to foster sustainable energy solutions worldwide. Salman is a prolific writer with many publications to his credit. His articles have been appearing in reputed journals, magazines and web-portals on a wide array of topics related to renewable energy and waste management. Salman hold Masters degree in Chemical Engineering from Aligarh Muslim University, Aligarh (India). He is based in India and can be reached at salman.alg@gmail.com


The content & opinions in this article are the author’s and do not necessarily represent the views of AltEnergyMag

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

SOLTEC – SFOne single axis tracker

SOLTEC - SFOne single axis tracker

SFOne is the 1P single-axis tracker by Soltec. This tracker combines the mechanical simplicity with the extraordinary expertise of Soltec for more than 18 years. Specially designed for larger 72 an 78 cell modules, this tracker is self-powered thanks to its dedicated module, which results into a lower cost-operational power supply. The SFOne has a 5% less piles than standard competitor, what reduces a 75% the labor time.