Pyrolysis is the thermal decomposition of biomass occurring in the absence of oxygen. It is the fundamental chemical reaction that is the precursor of both the combustion and gasification processes and occurs naturally in the first two seconds. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide. Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.
BIOMASS PYROLYSIS
Salman Zafar | Biomass Energy Advisor
By Salman Zafar, Biomass Energy Advisor |
Introduction Pyrolysis can be performed at relatively small scale and at remote locations which enhance energy density of the biomass resource and reduce transport and handling costs. Heat transfer is a critical area in pyrolysis as the pyrolysis process is endothermic and sufficient heat transfer surface has to be provided to meet process heat needs. Pyrolysis offers a flexible and attractive way of converting solid biomass into an easily stored and transported liquid, which can be successfully used for the production of heat, power and chemicals. Figure 1 Process conditions for pyrolysis of biomass Feedstock for Pyrolysis The efficiency and nature of the pyrolysis process is dependent on the particle size of feedstocks. Most of the pyrolysis technologies can only process small particles to a maximum of 2 mm keeping in view the need for rapid heat transfer through the particle. The demand for small particle size means that the feedstock has to be size-reduced before being used for pyrolysis. Figure 2 A glance at feedstock availability and energy products from biomass pyrolysis Types of Pyrolysis
Pyrolysis processes can be categorized as slow pyrolysis or fast pyrolysis. Fast pyrolysis is currently the most widely used pyrolysis system. Slow pyrolysis takes several hours to complete and results in biochar as the main product. On the other hand, fast pyrolysis yields 60% bio-oil and takes seconds for complete pyrolysis. In addition, it gives 20% biochar and 20% syngas. Fast pyrolysis processes include open-core fixed bed pyrolysis, ablative fast pyrolysis, cyclonic fast pyrolysis, and rotating core fast pyrolysis systems. The essential features of a fast pyrolysis process are:
Uses of Bio-Oil Importance of Biochar
Conclusions |
|